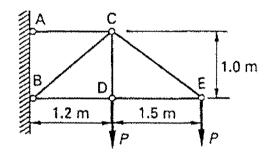


DAU-161001010304

Seat No. _____

B. Arch. (Sem.-III) Examination May - 2022

Structure - III


Time: 2 Hours] [Total Marks: 50

Instructions: (1) Answer should be specific with related explanatory text and diagrams.

- (2) All diagrams should be neat and clean with proper scale.
- (3) All diagrams must have appropriate title, subtitle, label, dimensions etc.
- (4) Use bullet point or key sentence to give answer rather than paragraph.
- 1 State whether the following statements are true or false (Any Ten) 10
 - (1) Pile foundation is considered as a Shallow foundation.
 - (2) Combine footing is done when distance between two column is less.
 - (3) Portal frames have Pined connections at a junction of beam and column.
 - (4) In case of Beam, Moment of Inertia increased as depth of Beam decreases.
 - (5) A liner beam spanning between two support points is an example of one-way system.
 - (6) An Arch is a Curved structure for spanning an opening designed to support a vertical load primarily by axial compression.
 - (7) Three-hinged arch structure doesn't resist bending moment at junctions.
 - (8) A statically determinate structure is the one in which reactions and internal forces can be determined from free-body diagrams and equations of equilibrium.

- (9) Hoop forces are generated in masonry vault structure.
- (10) Shape of B. M. Diagram of simply supported beam with uniformly distributed load at mid span is, Parabolic.
- (11) Truss is a structure, which doesn't allow bending moment to its joints.
- (12) bd⁴ /12 is the formula for M.I. of square section having width (b)
- 2 Explain in brief with neat sketches or diagrams (Any Four) 20
 - (a) Radius of gyration
 - (b) Statically determinate structure
 - (c) Inverted arch footing
 - (d) Meridional and hoop forces in dome
 - (e) One way structural slab
 - (f) Difference between Squinch And Pendentive
- 3 Find the Following (Any two)

20

- (a) Find the compression and tension for each member of the following by inspection.
- (b) Find the resultant force through vector diagram.
- (c) Find the resultant force through Horizontal and vertical force at any two point.